

CITY OF DETROIT

Mike Duggan, Mayor

DETROIT CITY COUNCIL

Brenda Jones, President
George Cushingberry Jr., President Pro Tem
Janeé Ayers
Scott Benson
Raquel Castañeda-López
Gabe Leland
Mary Sheffield
André L. Spivey
James Tate

Janice M. Winfrey, City Clerk

BOARD OF WATER COMMISSIONERS

Michael Einheuser, Chair Mary E. Blackmon, Vice Chair Lane Coleman John Henry Davis Linda D. Forte Jane C. Garcia Pamela Rodgers

Gary A. Brown, Director

Palencia Mobley, P.E., Deputy Director and Chief Engineer

2015 Water Quality Report

Published in 2016

A Message to Our Consumers

The Detroit Water and Sewerage Department (DWSD) delivers high quality water to the city of Detroit. The 2015 Water Quality Report outlines the sources of drinking water, lists test results, and contains important information about water and health.

The Michigan Department of Environmental Quality (MDEQ) and the Environmental Protection Agency (EPA) require DWSD to test water on a regular basis to ensure its safety. As a public utility, DWSD is required to report to customers annually on the quality of drinking water delivered to you. DWSD met all monitoring and reporting requirements for 2015.

DWSD will notify you immediately if there is ever a cause for concern about the quality of Detroit's water. To stay informed, we encourage you to sign up for water alerts via email and text message at www.detroitmi.gov/dwsd. This report and our water quality standards are mandated by the EPA and MDEQ.

How Services Are Provided

In 2015, Detroit Water and Sewerage Department supplied high-quality drinking water to approximately 40 percent of the state's population, serving 126 southeast Michigan communities. The system uses source water drawn from three intakes. Two source water intakes are located in the Detroit River: one to the north near the inlet of Lake St. Clair, and one to the south near Lake Erie. The third intake is located in Lake Huron. The Department operated and managed five water treatment plants in 2015. Four of the plants treat source water drawn from the Detroit River intakes. The fifth water treatment plant located in St. Clair County, uses source water drawn from Lake Huron. Detroit customers are provided service from four plants that treat source water drawn from the Detroit River.

Note: On January 1, 2016, the Detroit Water and Sewerage Department began leasing regional water and sewer infrastructure to the Great Lakes Water Authority which now manages water and sewer operations in several counties. The agreement resulted in greater financial stability for the DWSD system creating efficiencies to better control rates and produce greater transparency. The agreement includes a \$50 million annual lease payment to DWSD for the next 40 years to replace and rehabilitate DWSD's aging water and sewer system. DWSD continues to be responsible for the water and sewer infrastructure within the city of Detroit.

Lead

The water leaving our treatment plants does not contain lead. Lead can however be released to drinking water from lead service lines and home plumbing. DWSD is responsible for providing high-quality drinking water into your home but cannot control the variety of materials used in home plumbing components. The water provided to DWSD customers contains a corrosion control inhibitor to minimize leaching from lead service lines. If present, elevated levels of lead can cause serious health problems especially for pregnant women and young children. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking.

DWSD owns and maintains service lines starting at the water main in the street up to the customer's property boundary. Customers are responsible for the service lines from the property boundary to their home or business.

The Detroit
Water and
Sewerage
Department
wants you to
know your tap
water meets
or surpasses
all federal
and state
standards for
quality and
safety.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods and steps you may take to minimize exposure are available from the Safe Drinking Water Hotline at: 800-426-4791 or at www.epa.gov/safewater/lead. DWSD offers frequently asked questions and other information about lead and water quality at: www.detroitmi.gov/dwsd

Substances Found in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and in some cases, radioactive materials and substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants such as viruses and bacteria which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife;
- Inorganic contaminants such as salts and metals which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming;
- Pesticides and herbicides which may come from a variety of sources such as agriculture, urban storm water runoff and residential uses:
- Organic chemical contaminants including synthetic and volatile organics which are by-products of industrial processes and petroleum production, which can come from gas stations, urban storm water runoff and septic systems; and
- Radioactive contaminants which can be naturally occurring or the result of oil and gas production and mining activities.

In order to ensure tap water is safe to drink, the EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for human health. Drinking water including bottled water, may reasonably be expected to contain small amounts of some contaminants. The presence of contaminants does not necessarily indicate the water poses a health risk. Information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at: 800-426-4791.

Source Water Assessment

Your source water comes from the Detroit River situated within Lake St. Clair, the Clinton River, the Detroit River, Rouge River and the Ecorse River (in the U.S.), and parts of the Thames River, Little River, Turkey Creek and Sydenham watersheds in Canada. The Michigan Department of Natural Resources and Environment in partnership with the U.S. Geological Survey, the Detroit Water and Sewerage Department, and the Michigan Public Health Institute, performed a source water assessment in 2004 to determine the susceptibility of potential contamination in these watersheds. The susceptibility rating is on a seventiered scale from "very low" to "very high" based primarily on geologic sensitivity, water chemistry and contaminant sources. The susceptibility of the Detroit River source water intakes were determined to be highly susceptible to potential contamination. However, all four Detroit water treatment plants that use source water from the Detroit River have historically provided satisfactory treatment of this source water to meet drinking water standards in treated water.

DWSD has initiated source-water protection activities that include chemical containment, spill response and a mercury reduction program. DWSD participates in a National Pollutant Discharge Elimination System permit discharge program, and has an emergency response management plan. In 2015, DWSD received a grant from MDEQ to develop a surface water protection program for the Detroit River intakes. The program includes the following seven elements: roles and duties of government units and water supply agencies, delineation of a source water protection area, identification of potential source water contaminations, management approaches for protection, contingency plans, siting of new sources and public participation. For additional information about the Source Water Assessment report or the Surface Water Protection Program, call: 313-926-8102.

2015 City of Detroit Regulated Contaminants Table

INORGANIC CHEMIC	GALS – ANI	NUAL MONI	TURING AT PL	ANT FINISHED	WAIEK IAP				
REGULATED Contaminant	TEST DATE	UNIT	HEALTH GOAL MCLG	ALLOWED LEVEL MCL	HIGHEST LEVEL Detected	RANGE OF DETECTION	VIOLATION	MAJOR SOURCES IN DRINKING WATER	
Fluoride	5/11/2015	ppm	4	4	0.54	0.45-0.54	no	Erosion of natural deposit; Water additive, which promotes strong teeth; Discharge fro fertilizer and aluminum factories.	
Nitrate 5/11/2015		ppm	10	10	0.43	0.28-0.43	no	Runoff from fertilizer use; Leaching from se tanks, sewage; Erosion of natural deposits.	
2015 DISINFECTIOI	N RESIDUA	L – MONITO	DRING IN THE D	ETROIT DISTR	IBUTION SYST	EM			
REGULATED CONTAMINANT			VIOLATION	MAJOR SOURCES IN DRINKING WATER					
otal Chlorine Residual	2015	ppm	4	4	0.92 0.56-0.97		no	Water additive used to control microbes	
2015 DISINFECTION	N BY-PROD	UCTS – ST	AGE 2 DISINFE	CTION BY-PRO	DUCTS MONITO	DRING IN THE DIS	TRIBUTION S	YSTEM	
REGULATED Contaminant	TEST DATE	UNIT	HEALTH GOAL MCLG	ALLOWED LEVEL MCL	HIGHEST LEVEL LRAA	RANGE OF QUARTERLY RESULTS	VIOLATION	MAJOR SOURCES IN DRINKING WATER	
(TTHM) otal Trihalomethanes	2015	ppb	N/A	80	40.8	11.0-46.0	no	By-product of drinking water chlorinatio	
(HAA5) Haloacetic Acids	2015	ppb	N/A	60	12.4	6.0-16.0	no	By-product of drinking water chlorination	
2015 DISINFECTAN	T BY-PROD	UCT – MOI	NITORING AT T	HE WATERWOI	RKS PARK PLAI	NT FINISHED WAT	ER TAP		
REGULATED CONTAMINANT	TEST DATE	UNIT	HEALTH GOAL MCLG	ALLOWED LEVEL MCL	HIGHEST LEVEL RAA	RANGE OF Quarterly results	VIOLATION	MAJOR SOURCES IN DRINKING WATER	
Bromate	2015	ppb	0	10	0.8	ND-1.4	no	By-product of drinking water ozonation.	
2015 TURBIDITY –	MONITORE	n EVERV A	HOURS AT THE	DI ANT EINIGI	IEN WATER TAE				
HIGHEST SINGLE MEAS	UREMENT	DEVENT 4			TING TURBIDITY LIMI		VIOLATION	MAJOR SOURCES IN DRINKING WATER	
0.18 NTU				100%	3370)		no	Soil runoff.	
0.18 NTU	of the clouding	ess of water.	DWSD monitors it	100%		e effectiveness of our	no	Soil runoff.	
0.18 NTU Turbidity is a measure o				100% because it is a go	ood indicator of the		no	Soil runoff.	
0.18 NTU Turbidity is a measure of 2015 MICROBIOLOG REGULATED	GICAL CON			100% because it is a go	ood indicator of the		no filtration system	Soil runoff.	
0.18 NTU Turbidity is a measure of 2015 MICROBIOLO REGULATED CONTAMINANT	GICAL CON	TAMINANT	S – MONTHLY I	100% because it is a go	ood indicator of the	ON SYSTEM GHEST % DETECTED IN ONE MONTH	no	Soil runoff. MAJOR SOURCES IN DRINKING WATER	
0.18 NTU Turbidity is a measure of 2015 MICROBIOLOG REGULATED	GICAL CON	TAMINANT	S – MONTHLY I	100% because it is a go	ood indicator of the	ON SYSTEM GHEST % DETECTED	no filtration system	Soil runoff.	
0.18 NTU Turbidity is a measure of 2015 MICROBIOLO REGULATED CONTAMINANT	GICAL CON	Presence A routine	S – MONTHLY I	100% because it is a go MONITORING I L L L L L L L L L L L L L	N DISTRIBUTION HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ON SYSTEM GHEST % DETECTED IN ONE MONTH	no filtration system VIOLATION	Soil runoff. MAJOR SOURCES IN DRINKING WATER	
0.18 NTU Turbidity is a measure of 2015 MICROBIOLO REGULATED CONTAMINANT Total Coliform Bacter	MCLG O	Presence A routine	MC e of Coliform bacte e sample and a repitive, and one is also	100% because it is a go MONITORING I L ria > 5% of mont eat sample are to so fecal or <i>E.coli</i>	N DISTRIBUTION HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ON SYSTEM GHEST % DETECTED IN ONE MONTH 1.7%	NO filtration system VIOLATION NO	Soil runoff. MAJOR SOURCES IN DRINKING WATER Naturally present in the environment.	
O.18 NTU Turbidity is a measure of 2015 MICROBIOLOG REGULATED CONTAMINANT Total Coliform Bacter E.coli Bacteria LEAD AND COPPER REGULATED	MCLG ia 0 MONITORII	Presence A routine posi	e of Coliform bacte e sample and a repitive, and one is als CUSTOMER'S T	100% because it is a go MONITORING I IL Pria > 5% of mont Deat sample are to go fecal or <i>E.coli</i> TAP IN 2014 ACTION	nood indicator of the N DISTRIBUTIO HII hly samples otal coliform positive	ON SYSTEM GHEST % DETECTED IN ONE MONTH 1.7% O	no filtration system violation no	Soil runoff. MAJOR SOURCES IN DRINKING WATER Naturally present in the environment. Human waste and animal fecal waste.	
O.18 NTU Turbidity is a measure of 2015 MICROBIOLO REGULATED CONTAMINANT Total Coliform Bacter E.coli Bacteria LEAD AND COPPER	MCLG O	Presence A routine	e of Coliform bacte e sample and a repitive, and one is also CUSTOMER'S T	because it is a go MONITORING I I I I I Deat sample are to so fecal or <i>E.coli</i> TAP IN 2014	N DISTRIBUTIO HI hly samples otal coliform positive	ON SYSTEM GHEST % DETECTED IN ONE MONTH 1.7% 0	NO filtration system VIOLATION NO	Soil runoff. MAJOR SOURCES IN DRINKING WATER Naturally present in the environment. Human waste and animal fecal waste. MAJOR SOURCES IN DRINKING WATER Corrosion of household plumbing system	
O.18 NTU Turbidity is a measure of 2015 MICROBIOLOG REGULATED CONTAMINANT Total Coliform Bacter E.coli Bacteria LEAD AND COPPER REGULATED CONTAMINANT	MCLG ia 0 0 MONITORII TEST DATE	Presence A routine posi	e of Coliform bacte e sample and a reptitive, and one is als CUSTOMER'S T HEALTH GOAL MCLG	because it is a go WONITORING I I I I I I I I I I I I I	n DISTRIBUTIO HI hly samples otal coliform positive	ON SYSTEM GHEST % DETECTED IN ONE MONTH 1.7% O NUMBER OF SAMPLES OVER AL	no filtration system VIOLATION NO NO VIOLATION	Soil runoff. MAJOR SOURCES IN DRINKING WATER Naturally present in the environment. Human waste and animal fecal waste. MAJOR SOURCES IN DRINKING WATER Corrosion of household plumbing system; Erosion of natural deposits; Leaching from	
O.18 NTU Turbidity is a measure of 2015 MICROBIOLOG REGULATED CONTAMINANT Total Coliform Bacter E.coli Bacteria LEAD AND COPPER REGULATED CONTAMINANT Lead Copper	MCLG MCLG O MONITORII TEST DATE 2014 2014	Presence A routine posi NG AT THE UNIT ppb ppm	e of Coliform bacte e sample and a repitive, and one is als CUSTOMER'S T HEALTH GOAL MCLG 0 1.3	too% because it is a go NONITORING I I I I I I I I I I I I I	hly samples otal coliform positive 90th PERCENTILE VALUE* 2.3 0.075	ON SYSTEM GHEST % DETECTED IN ONE MONTH 1.7% O NUMBER OF SAMPLES OVER AL O O	no filtration system VIOLATION NO VIOLATION NO NO NO	MAJOR SOURCES IN DRINKING WATER Naturally present in the environment. Human waste and animal fecal waste. MAJOR SOURCES IN DRINKING WATER Corrosion of household plumbing system; Erosion of natural deposits, Leaching from wood preservatives.	
O.18 NTU Turbidity is a measure of 2015 MICROBIOLOG REGULATED CONTAMINANT Total Coliform Bacter E.coli Bacteria LEAD AND COPPER REGULATED CONTAMINANT Lead Copper *The 90th percentile value must be met. REGULATED	MCLG MCLG O MONITORII TEST DATE 2014 2014 e means 90 pe	Presence A routine posi NG AT THE UNIT ppb ppm	e of Coliform bacte e sample and a repitive, and one is als CUSTOMER'S T HEALTH GOAL MCLG 0 1.3	because it is a go WONITORING I I I I I I I I I I I I I	Dood indicator of the N DISTRIBUTION HILL HILL HILL HILL HILL HILL HILL HIL	ON SYSTEM GHEST % DETECTED IN ONE MONTH 1.7% O NUMBER OF SAMPLES OVER AL O O	no filtration system VIOLATION NO VIOLATION NO NO NO	MAJOR SOURCES IN DRINKING WATER Naturally present in the environment. Human waste and animal fecal waste. MAJOR SOURCES IN DRINKING WATER Corrosion of household plumbing syster Erosion of natural deposits. Corrosion of household plumbing system; Erosion of natural deposits; Leaching from wood preservatives. le value is above the AL additional requirements	
O.18 NTU Turbidity is a measure of 2015 MICROBIOLOG REGULATED CONTAMINANT Total Coliform Bacter E.coli Bacteria LEAD AND COPPER REGULATED CONTAMINANT Lead Copper *The 90th percentile value must be met. REGULATED CONTAMINANT Total Organic Cai	MCLG MCLG IA 0 O MONITORII TEST DATE 2014 2014 e means 90 pe	Presence A routine posi NG AT THE UNIT ppb ppm ercent of the he	e of Coliform bacte e sample and a repitive, and one is als CUSTOMER'S T HEALTH GOAL MCLG 0 1.3 Domes tested have le	too% because it is a go NONITORING I I I I I I I I I I I I I	DOOD INDICATOR OF THE CONTRIBUTION HIS PROPERTY OF THE CONTRIBUTION OF THE CONTRIBUTIO	ON SYSTEM GHEST % DETECTED IN ONE MONTH 1.7% O NUMBER OF SAMPLES OVER AL O O O O O O O O O O O O O O O O O O	no filtration system VIOLATION NO NO TO f the 90th percent	MAJOR SOURCES IN DRINKING WATER Naturally present in the environment. Human waste and animal fecal waste. MAJOR SOURCES IN DRINKING WATER Corrosion of household plumbing system; Erosion of natural deposits, Leaching from wood preservatives.	
O.18 NTU Turbidity is a measure of 2015 MICROBIOLOG REGULATED CONTAMINANT Total Coliform Bacter E.coli Bacteria LEAD AND COPPER REGULATED CONTAMINANT Lead Copper *The 90th percentile value must be met. REGULATED CONTAMINANT Total Organic Calppm	MONITORII TEST DATE 2014 2014 e means 90 pe	Presence A routine posi NG AT THE UNIT ppb ppm ercent of the ho The Total Or the TOC ren requirement	e of Coliform bacte e sample and a repitive, and one is als CUSTOMER'S T HEALTH GOAL MCLG 0 1.3 omes tested have le	because it is a go MONITORING I I I I I I I I I I I I I	Pood indicator of the N DISTRIBUTION HISTRIBUTION HISTRIB	ON SYSTEM GHEST % DETECTED IN ONE MONTH 1.7% O NUMBER OF SAMPLES OVER AL O O O O O O O O O O O O O	no filtration system VIOLATION NO NO TO f the 90th percent	MAJOR SOURCES IN DRINKING WATER Naturally present in the environment. Human waste and animal fecal waste. MAJOR SOURCES IN DRINKING WATER Corrosion of household plumbing system Erosion of natural deposits. Corrosion of household plumbing system; Erosion of natural deposits; Leaching from wood preservatives. le value is above the AL additional requirements	
O.18 NTU Turbidity is a measure of 2015 MICROBIOLOG REGULATED CONTAMINANT Total Coliform Bacter E.coli Bacteria LEAD AND COPPER REGULATED CONTAMINANT Lead Copper *The 90th percentile value must be met. REGULATED CONTAMINANT Total Organic Calppm RADIONUCLIDES —	MONITORII TEST DATE 2014 2014 e means 90 pe	Presence A routine posi NG AT THE UNIT ppb ppm ercent of the ho The Total Or the TOC ren requirement	e of Coliform bacte e sample and a repitive, and one is als CUSTOMER'S T HEALTH GOAL MCLG 0 1.3 omes tested have le	because it is a go MONITORING I I I I I I I I I I I I I	Pood indicator of the N DISTRIBUTION HISTRIBUTION HISTRIB	ON SYSTEM GHEST % DETECTED IN ONE MONTH 1.7% O NUMBER OF SAMPLES OVER AL O O O O O O O O O O O O O O O O O O	no filtration system VIOLATION NO NO TO f the 90th percent	MAJOR SOURCES IN DRINKING WATER Naturally present in the environment. Human waste and animal fecal waste. MAJOR SOURCES IN DRINKING WATER Corrosion of household plumbing system; Erosion of natural deposits. Corrosion of household plumbing system; Erosion of natural deposits; Leaching from wood preservatives. le value is above the AL additional requirements	
O.18 NTU Turbidity is a measure of 2015 MICROBIOLOG REGULATED CONTAMINANT Total Coliform Bacter E.coli Bacteria LEAD AND COPPER REGULATED CONTAMINANT Lead Copper *The 90th percentile value must be met. REGULATED CONTAMINANT Total Organic Cai	MONITORII TEST DATE 2014 2014 e means 90 pe	Presence A routine posi NG AT THE UNIT ppb ppm ercent of the ho The Total Or the TOC ren requirement	e of Coliform bacte e sample and a repitive, and one is als CUSTOMER'S T HEALTH GOAL MCLG 0 1.3 omes tested have le	because it is a go MONITORING I I I I I I I I I I I I I	Dod indicator of the N DISTRIBUTION HILL HILL HILL HILL HILL HILL HILL HIL	ON SYSTEM GHEST % DETECTED IN ONE MONTH 1.7% O NUMBER OF SAMPLES OVER AL O O O O O O O O O O O O O O O O O O	no filtration system VIOLATION NO NO TO f the 90th percent	MAJOR SOURCES IN DRINKING WATER Naturally present in the environment. Human waste and animal fecal waste. MAJOR SOURCES IN DRINKING WATER Corrosion of household plumbing system; Erosion of natural deposits. Corrosion of household plumbing system; Erosion of natural deposits; Leaching from wood preservatives. le value is above the AL additional requirements	
O.18 NTU Turbidity is a measure of 2015 MICROBIOLOG REGULATED CONTAMINANT Total Coliform Bacteria LEAD AND COPPER REGULATED CONTAMINANT Lead Copper *The 90th percentile value must be met. REGULATED CONTAMINANT Total Organic Calppm RADIONUCLIDES — REGULATED	MONITORE MONITORE	Presence A routine posi NG AT THE UNIT ppb ppm ercent of the horizontal Or the TOC ren requirement D AT THE P	e of Coliform bacte e sample and a reptitive, and one is als CUSTOMER'S T HEALTH GOAL O 1.3 Domes tested have le	because it is a go WONITORING I I I I I I I I I I I I I	DOOD INDICATOR OF THE CONTRIBUTION HIS PRODUCTION OF THE CONTRIBUTION OF THE CONTRIBUT	ON SYSTEM GHEST % DETECTED IN ONE MONTH 1.7% O NUMBER OF SAMPLES OVER AL O O O O O O O O O O O O O	NO Inco VIOLATION NO NO O THE STATE OF THE S	MAJOR SOURCES IN DRINKING WATER Naturally present in the environment. Human waste and animal fecal waste. MAJOR SOURCES IN DRINKING WATER Corrosion of household plumbing system; Erosion of natural deposits; Corrosion of household plumbing system; Erosion of natural deposits; Leaching from wood preservatives. le value is above the AL additional requirements TYPICAL SOURCE OF CONTAMINANT Erosion of natural deposits.	
O.18 NTU Turbidity is a measure of 2015 MICROBIOLOG REGULATED CONTAMINANT Total Coliform Bacteria LEAD AND COPPER REGULATED CONTAMINANT Lead Copper *The 90th percentile valumust be met. REGULATED CONTAMINANT Total Organic Calppm RADIONUCLIDES — REGULATED CONTAMINANT Combined Radium	MONITORE TEST DATE 2014 2014 e means 90 per T MONITORE TEST DATE 5/13/14	Presence A routine posi NG AT THE UNIT ppb ppm Precent of the here The Total Or the TOC ren requirement D AT THE P	e of Coliform bacte e sample and a repitive, and one is als CUSTOMER'S T HEALTH GOAL MCLG 0 1.3 Domes tested have le	too% because it is a go WONITORING I I I I I I I I I I I I I	DOOD INDICATOR OF THE CONTRIBUTION HIS PRODUCTION OF THE CONTRIBUTION OF THE CONTRIBUT	ON SYSTEM GHEST % DETECTED IN ONE MONTH 1.7% 0 NUMBER OF SAMPLES OVER AL 0 0 0 0 0 0 0 0 0 0 0 0 0	riotration system VIOLATION NO NO TO The 90th percention TOC removal and low, there is no	MAJOR SOURCES IN DRINKING WATER Naturally present in the environment. Human waste and animal fecal waste. MAJOR SOURCES IN DRINKING WATER Corrosion of household plumbing system; Erosion of natural deposits. Corrosion of household plumbing system; Erosion of natural deposits; Leaching from wood preservatives. le value is above the AL additional requirements TYPICAL SOURCE OF CONTAMINANT Erosion of natural deposits.	
O.18 NTU Turbidity is a measure of 2015 MICROBIOLOG REGULATED CONTAMINANT Total Coliform Bacteria LEAD AND COPPER REGULATED CONTAMINANT Lead Copper *The 90th percentile value must be met. REGULATED CONTAMINANT Total Organic Cale ppm RADIONUCLIDES — REGULATED CONTAMINANT Combined Radium Radium 226 and 228	MONITORE TEST DATE 2014 2014 e means 90 per T MONITORE TEST DATE 5/13/14	Presence A routine posi NG AT THE UNIT ppb ppm Precent of the here The Total Or the TOC ren requirement D AT THE P	e of Coliform bacte e sample and a repitive, and one is als CUSTOMER'S T HEALTH GOAL MCLG 0 1.3 Domes tested have le	too% because it is a go WONITORING I I I I I I I I I I I I I	DOOD INDICATOR OF THE CONTRIBUTION HIS PRODUCTION OF THE CONTRIBUTION OF THE CONTRIBUT	ON SYSTEM GHEST % DETECTED IN ONE MONTH 1.7% 0 NUMBER OF SAMPLES OVER AL 0 0 0 0 0 0 0 0 0 0 0 0 0	NO filtration system VIOLATION NO NO TO TOC removal and low, there is no VIOLATION NO NO TOC removal and low, there is no	MAJOR SOURCES IN DRINKING WATER Naturally present in the environment. Human waste and animal fecal waste. MAJOR SOURCES IN DRINKING WATER Corrosion of household plumbing system; Erosion of natural deposits. Corrosion of household plumbing system; Erosion of natural deposits; Leaching from wood preservatives. le value is above the AL additional requirements TYPICAL SOURCE OF CONTAMINANT Erosion of natural deposits.	

About Unregulated Contaminant Monitoring

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. Before EPA regulates a contaminant, it considers adverse health effects, the occurrence of the contaminant in drinking water, and whether the regulation would reduce health risk. The Detroit Water and Sewerage Department (DWSD) began monitoring for twenty-eight unregulated contaminants in 2014. The following tables list the unregulated substances detected during the calendar year 2015.

2015 UNREGULATED CONTAMINANTS – MONITORED AT THE PLANT FINISHED WATER TAPS									
REGULATED Contaminant	TEST DATE	UNIT	AVERAGE LEVEL DETECTED	RANGE OF DETECTION	HEALTH Advisory	MCLG	MCL	SOURCE OF CONTAMINANT	
Strontium	2015	ppb	106	98.7-124	4000	N/A	N/A	Erosion of natural deposits.	
Total Chromium	2015	ppb	0.28	0.21-0.42	N/A	100	100	Discharge from steel and pulp mills; Erosion of natural deposits.	
Chromium +6	2015	ppb	0.13	0.082-0.24	N/A	N/A	N/A	Discharge from steel and pulp mills; Erosion of natural deposits.	
Vanadium	2015	ppb	0.21	ND-0.66	N/A	N/A	N/A	Erosion of natural deposits.	

2015 UNREGULATED CONTAMINANTS – MONITORED IN THE DISTRIBUTION SYSTEM									
REGULATED Contaminant	TEST DATE	UNIT	AVERAGE LEVEL DETECTION	RANGE OF DETECTION	HEALTH Advisory	MCLG	MCL	SOURCE OF CONTAMINANT	
Strontium	2015	ppb	109	102-124	4000	N/A	N/A	Erosion of natural deposits.	
Total Chromium	2015	ppb	0.21	ND-0.45	N/A	100	100	Discharge from steel and pulp mills; Erosion of natural deposits.	
Chromium +6	2015	ppb	0.11	0.086-0.18	N/A	N/A	N/A	Discharge from steel and pulp mills; Erosion of natural deposits.	
Vanadium	2015	ppb	0.20	ND-0.53	N/A	N/A	N/A	Erosion of natural deposits.	

Key to the Detected Contaminants Table

SYMBOL	ABBREVIATION	DEFINITION/EXPLANATION
>	Greater Than	
AL	Action Level	The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements which a water system must follow.
НАА5	Haloacetic Acids	HAA5 is the total of bromoacetic, chloroacetic, dibromoacetic, dichloroacetic and trichloroacetic acids. Compliance is based on the total.
LRAA	Locational Running Annual Average	The average of sample results taken at a particular monitoring location during the previous four calendar quarters.
MCL	Maximum Contaminant Level	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
MCLG	Maximum Contaminant Level Goal	The level of contaminant in drinking water below which there is no known or expected risk to health.
MRDL	Maximum Residential Disinfectant Level	The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MRDLG	Maximum Residential Disinfectant Level Goal	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRLDG's do not reflect the benefits of the use of disinfectants to control microbial contaminants.
N/A	Not Applicable	
ND	Not Detected	
NTU	Nephelometric Turbidity Units	Measures the cloudiness of water.
pCi/L	Picocuries Per Liter	A measure of radioactivity.
ppb	Parts Per Billion (one in one billion)	The ppb is equivalent to micrograms per liter. A microgram = 1/1000 milligram.
ppm	Parts Per Million (one in one million)	The ppm is equivalent to milligrams per liter. A milligram = 1/1000 gram.
RAA	Running Annual Average	The average of sample results during the previous four calendar quarters.
TT	Treatment Technique	A required process intended to reduce the level of a contaminant in drinking water.
TTHM	Total Trihalomethanes	Total Trihalomethanes is the sum of chloroform, bromodichloromethane, dibromoochloromethane and bromoform. Compliance is based on the total.
µmhos	Micromhos	Measure of electrical conductance of water.
°C	Celsius	A scale of temperature in which water freezes at 0° and boils at 100° under standard conditions.

Health Concerns

Some people have greater vulnerability to contaminants in drinking water than the general population. Infants, the elderly, and immuno-compromised individuals can be at risk for infections. People with AIDS or other immune system disorders and people who are undergoing chemotherapy or who have undergone organ transplants can be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. The Environmental Protection Agency and Center for Disease Control and Prevention offers information on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants. For more information about contaminants and potential health risks, contact the EPA's Safe Drinking Water Hotline at: 800-426-4791.

Turbidity

Turbidity is a measure of cloudiness in water. DWSD monitors turbidity measurements because it is a good indicator of the effectiveness of our filtration system. Turbidity can interfere with disinfection and provide a medium for microbial growth and may indicate the presence of disease-causing organisms.

Customer Care

On April 4, 2016, the Detroit Water and Sewerage Department began "Identity Verification" for all new services. The enhancements require customers to present valid government-issued identification and the customer's social security number in order to establish services, set-up payment plan agreements or conduct business with the department. These enhancements will help the department protect customer's identity and, in the very near future, will allow us to offer a full set of account-access and self-service options including e-bill registration, individual service requests, enrollment in recurring payment plans and account-profile management. To contact our customer care center, call: 313-267-8000.

2015 City of Detroit Mineral Analysis – Water Leaving the Treatment Plants

PARAMETER	UNITS	MAX	MIN	AVG
Turbidity	NTU	0.13	0.03	0.06
Total Solids	ppm	198	112	143
Total Dissolved Solids	ppm	180	82	133
Aluminum	ppm	0.793	0.053	0.104
Iron	ppm	2.273	0.050	0.120
Copper	ppm	0.009	0.005	0.001
Magnesium	ppm	16.76	5.80	8.39
Calcium	ppm	31.1	10.2	24.9
Sodium	ppm	6.53	3.55	5.12
Potassium	ppm	2.37	0.78	0.92
Manganese	ppm	0.002	0.002	0.000
Lead	ppm	0.000	0.000	0.000
Zinc	ppm	0.07	0.03	0.01
Silica	ppm	1.3	0.4	0.9
Sulfate	ppm	53.5	17.6	23.4

PARAMETER	UNITS	MAX	MIN	AVG
Phosphorus	ppm	0.78	0.22	0.32
Free Carbon Dioxide	ppm	13.3	3.5	7.2
Total Hardness	ppm	130	88	106
Total Alkalinity	ppm	104	66	79
Carbonate Alkalinity	ppm	0	0	0
Bi-Carbonate Alkalinity	ppm	104	66	79
Non-Carbonate Hardness	ppm	46	6	27
Chemical Oxygen Demand	ppm	10.0	2.0	3.5
Dissolved Oxygen	ppm	14.5	5.5	9.6
Chloride	ppm	20.3	8.0	10.9
Nitrate Nitrogen	ppm	0.74	0.19	0.32
Fluoride	ppm	0.83	0.43	0.61
pH		7.65	7.01	7.37
Specific Conductance at 25 °C	μmhos	252	199	226
Temperature	°C	25.1	2.0	14.5

2015
Water
Quality
Report

Detroit Water and Sewerage Department

735 Randolph Street Detroit, Michigan 48226 PRESORTED STANDARD MAIL U.S. POSTAGE PAID DETROIT MI PERMIT NO. 7998

Postal Customer

ATTENTION

The report contains important information about water quality in your community. Este es un informe importante sobre la calidad del agua y la seguridad.

التقرير يتضمن معلومات هامة عن جودة وصحة الماء في منطقتك

This report is available on our website at www.detroitmi.gov/dwsd

We welcome your comments and opinions about this report and will be happy to answer any questions you may have. Please direct your comments or questions to the

Public Affairs Group at: (313) 964-9570 or you may email your comments to: dwsd-publicaffairs @detroitmi.gov

Emergency

To report emergencies such as flooded streets or basements, missing manhole covers, leaky fire hydrants, water main breaks, or running water at or near vacant properties, call the DWSD 24-hour emergency service line at: 313-267-7401.

DWSD is committed to responding promptly to reports of water emergencies. Smartphone users may download the Improve Detroit mobile app to take a photo and report the issue or citizens may report online at: www.detroitmi.gov/dwsd

Public Participation

The Board of Water Commissioners meeting is held the third Wednesday of each month at the Water Board Building located at 735 Randolph Street. Unless otherwise noted, public hearings and other Board of Water Commissioner meetings are open to the public. For more information, please contact the DWSD board liaison at: 313-224-4704 or visit: www.detroitmi.gov/government/boards

ATTENTION: This is a 2015 water quality report which contains important information about your drinking water. If you are having difficulty understanding the report, please have someone translate this document for you or speak with a person who understands the information contained in this water quality report.

ATENCIÓN: Éste es un informe de calidad de agua de 2015 que contiene información importante sobre su agua potable. Si usted está teniendo dificultades para leer o entender este informe, por favor alguien tiene traducir este documento para usted o hablar con una persona que entiende la información contenida en este documento.

إنتباه: هذا هو تقرير ال-٢٠١٥ عن جودة المياه، و يحتوي على معلومات هامة حول مياه الشرب الخاصة بك. إذا كنت تواجه صعوبة في فهم هذا التقرير، يرجى أن تجد شخصاً ما يترجم هذه الوثيقة لك أو أن تتحدث مع شخص يفهم المعلومات الواردة في هذا التقرير عن جودة المياه